Abell 78: la estrella que renació

Tras los bellos colores de la nebulosa Abell 78 se esconde un curioso renacimiento estelar. En el centro se halla una estrella moribunda, similar a nuestro Sol, que había expulsado sus capas externas en su camino hacia la extinción pero que, por un tiempo, regresó a una fase estelar anterior, la de gigante roja, y después repitió su trayecto hacia la fase de nebulosa planetaria.

Esta imagen combina información en rayos X obtenida en 2013 con el telescopio espacial XMM-Newton (azul), con observaciones en óptico con filtros especiales que revelan el brillo del oxígeno (verde) y el helio (rojo). Los datos en el óptico se obtuvieron en 2014 con el telescopio NOT de La Palma.

La liberación de las capas externas es un proceso habitual en las estrellas de entre 0,8 y ocho masas solares, cuando su combustible nuclear se agota. “Sin embargo, la vuelta a la vida de Abell 78 sí que resulta excepcional. Se encuentra entre los muy pocos casos en los que la estrella revive a pesar de que el núcleo ha dejado de producir energía”, apunta Jesús A. Toalá, investigador del Instituto de Astrofísica de Andalucía que encabeza la investigación.

 

CRÓNICA DE UN RENACIMIENTO

Las estrellas obtienen su energía de las reacciones termonucleares que convierten el hidrógeno del núcleo en helio. Al agotarse el hidrógeno, la estrella comienza a hundirse bajo su propio peso, proceso que calienta las capas externas, que se dilatan y expanden. La estrella aumenta su radio casi cien veces y comienza la etapa de gigante roja.

En el caso de estrellas de masa intermedia, como el Sol, comienza a quemarse helio en el núcleo, mientras la dilatación de la envoltura continúa hasta que el núcleo pierde control sobre ella y se expande libre en el espacio. El núcleo, muy caliente, produce radiación ultravioleta y un viento estelar que, al interaccionar con el material de la envoltura, hacen que emita luz.

Así se formó Abell 78, una nebulosa planetaria que presenta un cascarón brillante y una estrella central -una enana blanca con un núcleo de carbono y oxígeno-, una capa de helio y otra, más superficial, de hidrógeno. “Hasta aquí todo normal. Sin embargo, se encendió la fusión de helio en la capa intermedia, lo que produjo la eyección de parte del material y una dilatación tal que la estrella retomó las características de una gigante roja; entre ellas, la emisión de un viento estelar de baja velocidad”, apunta Toalá (IAA-CSIC).

Tras esta segunda fase de gigante roja, la estrella volvió a contraerse y comenzó a emitir un viento estelar muy veloz. “El material eyectado durante el estallido anterior es ahora barrido por el viento de la estrella e ionizado por su radiación ultravioleta, y se observan unos grumos con forma radial que emergen de la estrella central. La compleja interacción hace que se arranque material de los grumos, que alcance temperaturas de un millón de grados y que emita en rayos X”, añade Martín A. Guerrero, investigador del IAA-CSIC que participa en el estudio.

Abell 78 constituye un objeto de gran interés porque es una de las cuatro nebulosas planetarias renacidas que se conocen con certeza, y porque presenta tres tipos de viento estelar, lo que la convierte en el objeto idóneo para estudiar la interacción de vientos. Además, objetos como Abell 78 permiten anticipar el futuro del Sol, que previsiblemente formará una nebulosa planetaria.

FUENTE

--------------------------------

Células madre pluripotentes como posible terapia para alzhéimer, párkinson e infarto cerebral

Aspectos desconocidos hasta ahora sobre la biología de células madre serán fundamentales para su aplicación en terapias humanas

UGR/DICYT Un equipo internacional de científicos, en el que participa la Universidad de Granada, ha aportado nuevos datos desconocidos hasta la fecha sobre las células madre pluripotentes, una alternativa muy prometedora para el tratamiento de distintas enfermedades humanas y en especial para enfermedades inducidas por daño o degeneración de los tejidos tales como Alzheimer, Parkinson o infarto cerebral.

Su trabajo, que publica hoy la prestigiosa revista Cell Reports, revela conexiones funcionales muy importantes entre la regulación epigenética del genoma humano, las rutas de señalización celular y el fenómeno de heterogeneidad intercelular en células madre pluripotentes.

Así, este estudio contribuye a una mejor compresión de las transiciones de linaje celular y revela aspectos desconocidos hasta ahora sobre la biología de células madre, contribuyendo así al desarrollo de distintas aplicaciones de dichas células en terapias humanas.

David Landeira Frías, investigador del departamento de Ciencias de la Computación e Inteligencia Artificial de la Universidad de Granada y uno de los autores de este artículo, apunta que recientes avances en el campo de la Biomedicina “nos permiten reprogramar de manera artificial células del cuerpo de un organismo adulto a un estado de pluripotencia similar al encontrado durante el desarrollo embrionario temprano”.

Así, estas células reprogramadas pluripotentes retienen el potencial para regenerar cualquier célula y tejido de un organismo.

Diferencias de comportamiento

“Una de las grandes barreras para la aplicación segura y exitosa de esta tecnología a entornos clínicos es la naturaleza heterogénea de las poblaciones de células madre; variaciones funcionales entre células de una misma población generan grandes diferencias en su comportamiento que podría conllevar el fallo de la terapia, e incluso el desarrollo de nuevas enfermedades”, advierte el investigador de la UGR.

Las denominadas ‘variaciones célula-célula’ ocurren en células con el mismo genoma y, por tanto, es muy probable que los modulares epigenéticos tengan un papel crítico en la generación de la heterogeneidad funcional.

Mediante el uso de técnicas punteras en epigenómica, el laboratorio de David Landeira en el Centro de Genómica e Investigación Oncológica (GENYO), Pfizer-Junta de Andalucía-UGR, en colaboración con el laboratorio de Amanda Fisher, del MRC-Clinical Science Centre en Reino Unido, han analizado la función de un regulador epigenético (Jarid2) en la creación de variabilidad intercelular en poblaciones de células madre pluripotentes.

Los resultados de la investigación muestran que Jarid2 “es un factor esencial para que las células pluripotentes mantengan una interacción adecuada con las células de su entorno y puedan así llevar a cabo procesos de diferenciación celular de manera eficiente y coordinada”.

Además, los científicos han demostrado que Jarid2 regula la heterogeneidad y función de las células pluripotentes a través de rutas de señalización tradicionalmente implicadas en diversos tipos de cáncer, por lo que el estudio también es relevante en el contexto de esta enfermedad.

FUENTE